首页>数学指导>数学中考总复习,六大策略攻破压轴难题!

数学中考总复习,六大策略攻破压轴难题!

极客数学帮数学中考总复习,整理6类解题策略技巧,帮助同学们在复习时有方法的去解决压轴难题,这是数学试卷中分值很高的题,同学们一定要尽力在这些题上得分。一起来看看吧。

数学中考总复习

1.学会运用函数与方程思想。

从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法,这就是方程思想。

用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程()。这种思想在代数、几何及生活实际中有着广泛的应用。

直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。

2.学会运用数形结合思想。

数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想. 数形结合 思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。

纵观近几年全国各地的中考压轴题,绝大部分都是与平面直角坐标系有关,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。

3.要学会抢得分点。

一道中考数学压轴题解不出来,不等于一点不懂、一点不会,要将整道题目解题思路转化为得分点。如中考数学压轴题一般在大题下都有两至三个小题,难易程度是第1小题较易,大部学生都能拿到分数;2小题中等,起到承上启下的作用;3题偏难,不过往往建立在12两小题的基础之上。因此,我们在解答时要把第1小题的分数一定拿到,第2小题的分数要力争拿到,第3小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。

中考的评分标准是按照题目所考查的知识点进行评分,解对知识点、抓住得分点就会得分。因此,对于数学中考压轴题尽可能解答靠近得分点,最大限度地发挥自己的水平,把中考数学压轴题变成高分踏脚石。

4.学会运用等价转换思想。

转化思想是解决数学问题的一种最基本的数学思想。在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。

任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用。

中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略。

5.学会运用分类讨论的思想。

分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。

在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。

分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.正确的分类必须是周全的,既不重复、也不遗漏

6.转化思想:

我们知道任何事物都在不断的运动,也就是转化和变化。在生活中,为了解决一个具体问题,不论它有多复杂,我们都会把它简单化,熟悉化以后再去解决。体现在数学上也就是要把难的问题转化为简单的问题,把不熟悉的问题转化为熟悉的问题,把未知的问题转化为已知的问题。

如方程的学习中,一元一次方程是学习方程的基础,那么在学习二元一次方程组时,可以通过加减消元和代入消元这样的手段把二元一次方程组转化为一元一次方程来解决,转化(加减和代入)是手段,消元是目的;在学习一元二次方程时,可以通过因式分解把一元二次方程转化为两个一元一次方程,在这里,转化(分解因式)是手段,降次是目的。把未知转化为已知,把复杂转化为简单。同样,三元一次方程组可以通过加减和代入转化为二元一次方程组,再转化为一元一次方程。在几何学习中,三角形是基础,可能通过连对角线等作辅助线的方法把多边形转化为多个三角形进行问题的解决。

常见的转化要领有

( 1 )直接转化法:把原问题直接转化为根基定理、根基公式或根基图形问题 .

( 2 )换元法:运用换元把式子转化为有理式或使整式降幂等,把较庞大的函数、方程、不等式问题转化为易于解决的根基问题

( 3 )数形结正当:研究原问题中数量干系(解析式)与空间形式(图形)干系,通过相互调动得到转化途径

( 4 )等价转化法:把原问题转化为一个易于解决的等价命题,到达化归的目的

( 5 )特殊化要领:把原问题的形式向特殊化形式转化,并证明特殊化后的问题,使结论适合原问题

( 6 )结构法:结构一个符合的数学模型,把问题变为易于解决的问题

( 7 )坐标法:以坐标系为工具,用计较要领解决几许问题也是转化要领的一个重要途径

以上就是极客数学帮整理的有关于数学中考总复习,六大策略攻破压轴难题!的全部内容了。

上一篇:数学家的资料库:法国优秀的五位数学家

下一篇:鸡兔同笼问题公式、思路整理,学好鸡兔同笼很简单

相关文章推荐:
028-86511359
极客数学帮 / 蜀ICP备14004375号

Copyright c 2015-2018.All rights reserved / 极客数学帮 · 版权所有