首页>数学指导>应用题解答:行程问题应用题专题

应用题解答:行程问题应用题专题

极客数学帮应用题解答之行程问题应用题专题,今天的专题为大家总结了行程问题中的相遇问题和流水行船问题,对着类问题有疑惑的同学们都来看看吧。

应用题解答

相遇问题知识点

1.相遇问题是行程问题中的一种情况。这类应用题的特点是:两个运动的物体,同时从两地相对而行,越行越近,到一定的时候二者可以相遇。

2.相遇问题的数量关系:

速度和×相遇时间=两地路程

两地路程÷速度和=相遇时间

两地路程÷相遇时间=速度和

3.解题时,除掌握数量关系外,还要根据题意想象实际情景,画线段图来帮助理解和分析题意,突破题目的难点。

流水行船的要点及解题技巧

一、什么叫流水行船问题

船在水中航行时,除了自身的速度外,还受到水流的影响,在这种情况下计算船只的航行速度、时间和行程,研究水流速度与船只自身速度的相互作用问题,叫作流水行船问题。

二、流水行船问题中有哪三个基本量?

流水行船问题是行程问题中的一种,因此行程问题中的速度、时间、路程三个基本量之间的关系在这里也当然适用.

三、流水行船问题中的三个基本量之间有何关系?

流水行船问题还有以下两个基本公式:

(1)顺水速度=船速+水速,

(2)逆水速度=船速-水速. 这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.

水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。

根据加减法互为逆运算的关系:

由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速。

由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速。这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。

另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:

船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2

相遇问题例题解析

例题1.甲乙两车同时从AB两地相向而行,在距B54千米处相遇,它们各自到达对方车站后立即返回,在距A42千米处相遇。请问AB两地相距多少千米?

A.120 B.100 C.90 D.80

【答案】A

解析:设两地相距x千米,由题可知,第一次相遇两车共走了x,第二次相遇两车共走了2x,由于速度不变,所以,第一次相遇到第二次相遇走的路程分别为第一次相遇的二倍,即54×2=x-54+42,得出x=120

例题2.两汽车同时从AB两地相向而行,在离A52千米处相遇,到达对方城市后立即以原速沿原路返回,在离A44千米处相遇。两城市相距( )千米

A.200 B.150 C.120 D.100

【答案】D

解析:第一次相遇时两车共走一个全程,第二次相遇时两车共走了两个全程,从A城出发的汽车在第二次相遇时走了52×2=104千米,从B城出发的汽车走了52+44=94千米,故两城间距离为(104+96)÷2=100千米。

例题3.在一个圆形跑道上,甲从A点、乙从B点同时出发反向而行,8分钟后两人相遇,再过6分钟甲到B点,又过10分钟两人再次相遇,则甲环行一周需要( )?

A.24分钟 B.26分钟 C.28分钟 D.30分钟

【答案】C。解析:甲、乙两人从第一次相遇到第二次相遇,用了6+10=16分钟。也就是说,两人16分钟走一圈。从出发到两人第一次相遇用了8分钟,所以两人共走半圈,即从AB是半圈,甲从AB用了8+6=14分钟,故甲环行一周需要14×2=28分钟。也是一个倍数关系。

流水行船例题解析

例题1.一艘轮船从河的上游甲港顺流到达下游的丙港,然后调头逆流向上到达中游的乙港,共用了12小时。已知这条轮船的顺流速度是逆流速度的2倍,水流速度是每小时2千米,从甲港到乙港相距18千米。则甲、丙两港间的距离为()

A.44千米 B.48千米 C.30千米 D.36千米

【答案】

A。解析:顺流速度-逆流速度=2×水流速度,又顺流速度=2×逆流速度,可知顺流速度=4×水流速度=8千米/时,逆流速度=2×水流速度=4千米/时。设甲、丙两港间距离为X千米,可列方程X÷8+(X-18)÷4=12解得X=44

例题2.一艘轮船在两码头之间航行。如果顺水航行需8小时,如果逆水航行需11小时。已知水速为每小时3千米,那么两码头之间的距离是多少千米?

A.180 B.185 C.190 D.176

【答案】D

解析:设全程为s,那么顺水速度为,逆水速度为,由(顺水速度-逆水速度)/2=水速,知道-=6,得出s=176

【知识点拨】我们知道,船顺水航行时,船一方面按自己本身的速度即船速在水面上行进,同时整个水面又按水流动的速度在前进,因此船顺水航行的实际速度(简称顺水速度)就等于船速和水速的和,即: 顺水速度=船速+水速 同理:逆水速度=船速-水速 可推知:船速=(顺水速度+逆水速度)/2;水速=(顺水速度-逆水速度)/2

例题3.甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。

【分析】根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水、逆水所行时间求出。

解:顺水速度:208÷8=26(千米/小时) 逆水速度:208÷13=16(千米/小时) 船速:(26+16)÷2=21(千米/小时) 水速:(2616)÷2=5(千米/小时)

答:船在静水中的速度为每小时21千米,水流速度每小时5千米。

例题4.某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?

【分析】要想求从乙地返回甲地需要多少时间,只要分别求出甲、乙两地之间的路程和逆水速度。

解: 从甲地到乙地,顺水速度:15+3=18(千米/小时), 甲乙两地路程:18×8=144(千米), 从乙地到甲地的逆水速度:153=12(千米/小时), 返回时逆行用的时间:144÷12=12(小时)

答:从乙地返回甲地需要12小时。

例题5.甲、乙两港相距360千米,一轮船往返两港需35小时,逆流航行比顺流航行多花了5小时.现在有一机帆船,静水中速度是每小时12千米,这机帆船往返两港要多少小时?

【分析】要求帆船往返两港的时间,就要先求出水速.由题意可以知道,轮船逆流航行与顺流航行的时间和与时间差分别是35小时与5小时,用和差问题解法可以求出逆流航行和顺流航行的时间.并能进一步求出轮船的逆流速度和顺流速度.在此基础上再用和差问题解法求出水速。

解: 轮船逆流航行的时间:(35+5)÷2=20(小时), 顺流航行的时间:(355)÷2=15(小时), 轮船逆流速度:360÷20=18(千米/小时), 顺流速度:360÷15=24(千米/小时), 水速:(2418)÷2=3(千米/小时), 帆船的顺流速度:12+3=15(千米/小时), 帆船的逆水速度:123=9(千米/小时), 帆船往返两港所用时间: 360÷15+360÷9=24+40=64(小时)

答:机帆船往返两港要64小时。

练习题

1、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,4小时后还相距20千米”两地相距多少千米?

2、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。相遇时两车各行了多少千米?

3、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。相遇时哪辆车行的路程多?多多少?

4、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。乙车行完全程要多少小时?

5、电视机厂要装配2500台电视机,两个组同时装配,10天完成,一个组每天装配52台,另一个组每天装配多少台?

6、一辆汽车每小时行38千米,另一辆汽车每小时行41千米。两车同时从相距237千米的两地相向开出,经过几小时两车相遇?

7、两地间的铁路长250千米。一列货车和一列客车同时从两地相对开出,客车每小时行52千米,货车每小时行48千米。经过几小时两车相遇?

8、两列火车从相距570千米的两地相对开出。甲车每小时行110千米,乙车每小时行80千米。经过几小时两车相遇?

9、两城之间的公路长256千米。甲乙两辆汽车同时从两个城市出发,相向而行,经过4小时相遇。甲车每小时行31千米,乙车每小时行多少千米?

10、甲乙两车分别从相距210千米的两地同时相向而行。甲每小时行30千米,乙每小时行40千米,2小时后两车相距多少千米?

11、甲乙两车分别从相距210千米的两地同时相背而行。甲每小时行30千米,乙每小时行40千米,2小时后两车相距多少千米?

12、两辆汽车同时从一个地方向相反的方向开出。甲车平均每小时行5.44千米,乙车平均每小时行38.5千米。经过3小时,两车相距多少千米?

13、甲、乙两列火车从两地相对行驶。甲车每小时行75千米,乙车每小时行69千米。甲开出2小时后,乙车才开出,再过3小时两车相遇。两地间的铁路长多少千米?

14、甲、乙两列火车同时从相距988千米的两地相向而行,经过5.2小时两车相遇。甲列车每小时行93千米,乙列车每小时行多少千米?

15、甲乙两艘轮船同时从相距126千米的两个码头相对开出,3小时相遇,甲船每小时航行22千米,乙船每小时航行多少千米?

16、甲乙两艘轮船从相距654千米的两地相对开出,8小时两船还相距22千米。已知乙船每小时行42千米,甲船每小时行多少千米?

17、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇。乙车每小时行多少千米?

18、甲、乙两人从两地同时相向出发,甲每分钟行60米,乙每分钟行80米,经过40分钟相遇。两地相距多少米?

以上就是极客数学帮整理的有关应用题解答:行程问题应用题专题的全部内容了。

上一篇:极客微推理:小推理练逻辑

下一篇:数学历史故事:古希腊数学的兴衰

相关文章推荐:
028-86511359
极客数学帮 / 蜀ICP备14004375号

Copyright c 2015-2018.All rights reserved / 极客数学帮 · 版权所有